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Thc budgets for the Reynolds stresses and for the dissipation rate of the turbulence 
kinetic energy are computed using direct simulation data of a turbulent channel flow. 
The budget data reveal that all the terms in the budget become important close to 
the wall. For inhomogeneous pressure boundary conditions, the pressure-strain term 
is split into a return term, a rapid term and a Stokes term. The Stokes term is 
important close to the wall. The rapid and return terms play different roles 
depending 011 the component of the term. A split of the velocity pressure-gradient 
term into a redistributive term and a diffusion term is proposed, which should be 
simpler to modcl. The budget data are used to test existing closure models for the 
pressure-strain term, the dissipation rate, and the transport rate. In  general, further 
work is needed to improve the models. 

1. Introduction 
The advancement of large-scale computers has led to the wide use of turbulence 

models to predict turbulent flows. At the 1980-81 AFOSR-HTTM-Stanford 
conference, phenomenological models of all categories (one-, two- and Reynolds- 
stress-equations) were used to  model various flows. The anticipated result, that 
transport models for the Reynolds-stress equations will outperform eddy-viscosity- 
type closures, did not happen. In  fact, in simple flows, mixing-length models 
produced results as good or better than Reynolds-stress models. However, the same 
Reynolds-stress models were used in a variety of flows to simulate quantities that 
simpler models could not model. The possibility of using the same model with the 
same constants for a variety of flows is the main motivation behind developing 
models a t  the Reynolds-stress level. 

According to Lumley (1978), the history of ‘higher-order’ modelling dates as far 
back as Kolmogorov (1942), who was the first to  suggest the characterization of 
turbulence by its intensity and scale. Chou ( 1 9 4 5 ~ )  considered the full Reynolds- 
stress equations and the triple-correlation equations to close the averaged 
Navier-Stokes equation. He suggested that the use of equations up to third moments 
is sufficient to characterize turbulent flows and, with simplifications, he predicted the 
mean velocity profile of a turbulent channel flow (Chou 1945b) which is the flow of 
interest in this work. 

Rotta (1951 a) developed closure models for the Reynolds-stress equations and 
advanced models for the pressure-strain and the dissipation-rate terms that are the 
basis for several of the present-day models. I n  a follow-up paper, Rotta (1951 b) 
introduced an equation for the turbulence lengthscale and tested his models by 
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simulating a turbulent channel flow. He found that the peak in the turbulence 
intensity could not be predicted by his theory. Davydov (1959) proposed closures a t  
the Reynolds-stress and the triple-correlation equations levels. Later, Davydov 
(1961) proposed closures for the equation of the dissipation rate of the turbulence 
kinetic energy (6) which are used by most present-day s-equations. Daly & Harlow 
(1970) (hereinafter referred to as DH) used various ideas to close the Reynolds-stress 
equations and used gradient-transport to model the turbulent diffusion terms. They 
added the scalar equation representing the trace of the dissipation-rate tensor to the 
Reynolds-stress equations. They also computed the channel flow with mixed success 
in predicting the Reynolds-stresses. Launder, Reece & Rodi (1975) (hereinafter 
referred to as LRR) advanced closure forms to  the Reynolds-stress equations that 
were tested for a variety of turbulent flows. Their models were developed for high- 
Reynolds-number flows. Hanjalid & Launder (1976) (hereinafter referred to as HL2) 
extended the model of LRR to simulate low-Reynolds-number turbulence and the 
near-wall region. HL2 computed the channel flow and found that their model 
underprcdiets the peak in the turbulence kinetic encrgy by 30 YO. More recently, Shih 
& Lumley (1986) proposed closure forms to the pressure-strain terms that seem to 
hold promise but did not use the model to compute to the wall (wall functions were 
used in the near-wall region). 

All of the work on turbulence modelling development uses indirect methods to test 
the various closure models. Because of the difficulty in measuring pressure and 
velocity with sufficient spatial accuracy, direct comparison of the closure models 
with experimental data has not been possible. Often, the adequacy of the model is 
judged by computing a flow with the model and by comparing the predicted mean 
velocity and Reynolds stresses with experimental data. With the advent of large- 
scale computers and new algorithm developments, direct simulations of turbulent 
flows are now possible a t  moderate Reynolds numbers. These simulations are being 
used to compute the terms in the budget of the Reynolds stresses. It is then possible 
to test the closure models by direct comparison of the closure formula with the term 
being modelled. 

A comprehensive testing of one-point closure models using simulation data was 
carried out by Rogallo (1981) where he tested different pressure-strain models for 
homogeneous flows under mean strain and shear. Recently, direct simulations of 
simple inhomogeneous flows have been carried out by Kim, Moin & Moser (1987) 
(hereinafter referred to as KMM), Moser & Moin (1984) and Spalart (1986a, b) .  KMM 
computed the fully turbulent channel flow using two different grid resolutions 
( 2  x lo6 and 4 x lo6 grid points) and found no dependency of the results on grid 
resolution. They compared their results with experimental data and were able to 
study the behaviour of turbulence correlations near the wall. Although some 
disagreements exist between experimental data and computed results, especially in 
the near-wall region, the overall agreements were good. KMM attributed the 
differences to possible probe errors due  to wall proximity. Moser & Moin computed 
a channel flow with mild streamwise curvature. They showed that the presence of the 
Giirtler vortices contributes substantially to the shear stress. They also computed the 
terms in the budget of the Reynolds stresses. Spalart (1986) computed boundary- 
layer flows with favourable pressure gradient and more recently (Spalart 1988) 
computed turbulent boundary layers with zero pressure gradient up to Re, = 1410. 
These simulations were carried out a t  moderate Reynolds numbers and were used to 
compute the Reynolds stresses and the terms in their budgets. 

The objective of this work is to present the budget data for the Reynolds stresses 
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and the budget data for the dissipation rate of the turbulence kinetic energy using 
thc flow fields of KMM. These budgets are needed for model development because 
they will provide a direct means to evaluate closure models. The budget data for the 
dissipation rate of the turbulence kinetic energy have eluded measurement 
techniques and will provide valuable guidelines for model developers and model 
testing. We will use these budgets to evaluate some existing algebraic models for the 
dissipation ratc of the Reynolds stresses. Closure models for the budget of the 
dissipation rate of the turbulence kinetic energy will be evaluated. We will also 
compare with the data some existing models for the pressure-strain and the 
turbulent transport rate of the Reynolds stresses. 

2. Channel data analyses 
The use of direct simulation to compute turbulent flow fields will be restricted to 

simple flows for the foreseeable future. The flows of engineering interest are 
simulated using the averaged Navier-Stokes equations in conjunction with closure 
models. With the advent of large c o q u t e r s ,  the trend will be towards using closures 
a t  the level of the budget for the Reynolds stresses. 

2.1. Reynolds-stress budget 
The transport equations for thr Reynolds stresses are derived from the Xavier- 
Stokes equations by ensemble averaging the equations, then deriving equations for 
thc fluctuating stresses and ensemble averaging these equations. For incompressible 
turbulent flow, the transport equations non-dimensionalized with ut/v (the wall- 
shear velocity, u, = (vU,y 1 and thc kincmatic viscosity, v) are given by 

where D/Dt = a/at+U,a/ax,, and the terms on the right-hand side of the above 
equation are identified as follows : 

production rate, 

et3 = 2u; ,?(, u;*, 

T2? = - iu: u; a,, 
4, = cu:q , ,  

n,, = - (uip' , I  +u' 3 PlJ 

dissipation rate, 

turbulent transport rate, 

viscous diffusion rate, 

velocity pressure-gradient term. 

__ 

Repeated indices imply summation over 1, 2, 3 and the indices (1 ,  2, 3) are used to 
denote the streamwise, xt, normal to the wall, y+ and spanwise, z+, directions 
respectively. In the above equation and in what follows, p' is a non-dimensional 
kinematic pressure. All quantities are { }+ quantities, but the superscript + will be 
used for the coordinate variables only to simplify the notation. In a fully developed 
channel, the flow is homogeneous in the streamwise (x') and - _ _ _ _  the spanwise (z+)  
directions. The relevant non-zero stresses in this ease are u;u;, u;u;, uju; and 
u; u;. Figures 1 4  show the terms in the budget of these stresses using the flow fields 
of KMM. The simulation flow fields are for a channel flow at Reynolds number RP, 
= u,S/v  = 180 based on wall-shear velocity (u,) and channel half-width (8 ) .  This 
corresponds to Reynolds number 3200 based on mean centreline veloc4ty and 8. Thc 

__ 
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FIGURE 1. Terms in the budget of u;u; in wall coordinates. PI, = production; = turbulent 
transport; D,,  = viscous diffusion ; ell = dissipation rate ; ZZ,, = velocity pressure-gradient, 
term. 
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FIGURE 2.  Terms in the budget of a in wall coordinates. T,, = turbulent transport ; D,, = 
viscous diffusion ; eZ2 = dissipation rate ; ZZ,, = velocity pressure-gradient term. 

_ _ _ _ _ _  
budget for the turbulence kinetic energy k = t(u; u; + ut ui + u; ug) is shown in figure 
5 .  The profiles for the different terms in these budgets (scaled by u , ~ / Y )  are similar in 
shape and magnitude to  those of Moser & Moin (1984) and Spalart (1988). 

To analyse the near-wall asymptotic behaviour of the different terms in the budget 
equations, we will expand the instantaneous velocity and pressure in Taylor series 
about-the-wall values as follows : 

i 
4 = b , y + + ~ , y + ~ + d ~ y + ~ + . . .  
U; = ~ ~ y + ~ + d ~ y + ~ + . . .  

u; = b, yf + c3 yf2 + d ,  y+, + . . . 
P' = a,+ b, y++ c p  yf2  +d, y+3 + . . . , 
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FIGURE 3. Terms in the budget of ubu; in wall coordinates. T33 = turbulent transport; D,, = 
viscous diffusion ; e3, = dissipation rate ; n,, = velocity pressure-gradient term. 
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FIGURE 4. Terms in the budget of gu; in wall coordinates. P12 = production; T,, = turbulent 
transport ; D,, = viscous diffusion ; eI2 = dissipation rate ; L',, = velocity pressure-gradient term. 

where the coefficients u p ,  b,, b,, . . . are functions of x+, z+ and t .  The coefficient c2 in 
the u; expansion is related to the coefficients b,  and b3 through the continuity 
equation 

(3) 

The first coefficient, up, in the pressure expansion is related to the coefficients c ,  and 
c3 through the x- and z-momentum equation 

2c2 = - ( b l , l  + '3 ,3) '  

which implies that 
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FIGURE 5 .  Terms in the budget of the turbulence kinetic energy, k ,  in wall coordinates. P, = 
production ; T, = turbulent transport ; D, = viscous diffusion ; E& = dissipation rate ; n, = velocity 
pressure-gradient term. 

The second coefficient, b,, in the pressure expansion is related to the coefficient c, 
through the y-momentum equation 

b, = 2c,. (6) 

Finally, the third coefficients, d, and d,, in the velocity expansions are related to 
b, and b,, through the y-partial derivative of the x- and z-momentum equations 

6d1 = b1,t,-2b1,11-b3,31-b1,33~ (7) 

6d3 = b 3 , t - 2 b 3 , 3 3 - b 1 , 1 3 - b 3 , 1 1 ’  (8) 

(9) 

__ 
Using ( 2 )  and (3) in the expression for the Reynolds shear stress, -uiu;, yields 

- -  
- ZL; U ;  = b, b,,, !j(y+), + . . . 

Chapman & Kuhn (1986) have used the ‘splatting argument’ to show (and the - data 
of KMM confirm) that near the wall the first term in the expansion of uiu; is 
positively correlated. The data of KMM show that = 1.4 x lo-,. In  the fully 
developed channel, the mean velocity near the wall will vary as, 

U = y+ - (yf),/(2Re,) + . . . (10) 

__ Substituting (9) and (10) into the expression for the production-rate term of the 
u;u; yields 

P,, = 6 ,  b,,,(y+), + . . . (11) 
- 

Figure 1 shows that the production term in the u;u; budget is the dominant 
‘producing’ (positive) term in the range y+ > 10. Moving towards the wall, the 
turbulent transport term becomes positive a t  around y+ x 10. Then the viscous- 
diffusion term becomes positive a t  y+ w 5, while the production term I-+ 0 as (Y‘)~. 
Taylor-series expansion about the wall of the viscous-diffusion-rate term yields 

D,, = 2m+ 12b,yy+ +. . . , (12) 
__ 

where from the data b, b, = 0.13. At large yf the dissipation-rate term and the 
velocity pressure-gradient term are both negative, and of the same order of 
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magnitude, and they balance the production rate. Moving towards the wall the 
velocity pressure-gradient term tends towards zero. The asymptotic behaviour close 
to the wall of ffl, is 

n,, = - 4 4 b , y + +  . . . ,  (13) 

where from the simulation we have --% z 8.5 x 10F. The dissipation rate term 
remains large a t  all y+ and does not vanish a t  the wall 

ell = 2 b , + 8 8 b , ~ ~ + +  

The above expansions show that close to  the wall the dissipation rate balances the 
viscous-diffusion rate plus the velocity pressure-gradient term. At the wall the 
viscous diffusion rate ~ is equal to the dissipation rate. 

The budget for the u; ug component of the Reynolds-stress tensor (figure 2) shows 
that the turbulent transport rate T,, is of the same order as the other terms through 
most of the channel. Close to the wall this term decays faster than the other terms. 
The ui ug budget does not have a production term but the velocity pressure-gradient 
term is the dominant producing term. The dissipation-rate term is the dominant 
consuming term. The viscous-diffusion-rate term is small compared to the other 
terms except very close to the wall (y' < 20). Taylor-series expansion of the viscous- 
diffusion-rate term, L),,, in the near-wall region yields 

~ 

D,, = 12c,~,(y+)~ + . . . . (15) 

From the simulation we have a = 7.4 x Equation (15) shows that close to the 
wall the diffusion rate is positive. Expansion of the dissipation-rate term e2, yields 

eZ2 = 8C,Cz(yf)' + . . . . (16) 

Finally, expansion of the velocity pressure-gradient term yields 

II,, = - 4c7&4+)2 + . . . . 
As expected, close to the wall II,, balances with D,,-cZ2. The expansion (17) shows 
that Z7,, is negative close - to the wall. 

The budget for the u$ uh component of the Reynolds-stress tensor (figure 3) shows 
that away from the wall the 'producing' term is the velocity pressure-gradient term. 
The dominant consuming term is the dissipation-rate term. Moving towards the wall, 
the velocity pressure-gradient term decreases as 

f f , ,  = -44b,y++. . . . (18) 

From the simulation we have -% % 4.4 x lop3. The viscous-diffusion-rate term 
becomes important close to the wall and reaches a maximum a t  the wall 

D,, = 2 b , + 1 2 b , y + +  . . . .  (19) 

From the simulation data we have b,b, = 3.76 x lo-,. The dissipation-rate term also 
reaches a maximum a t  the wall. The near-wall behaviour of es3 is given by 

€'33 = 2 b , + + 8 b , y + +  . . . .  

At all y+ the turbulent &ansport rate T33 remains small compared to the other terms. 
This is in contrast with T2, which is of the same order as the other terms in the budget __ 
of u; u;. ___ ~ 

As in the budget of uiu;, the budget for u;ui (figure 4) is dominated by PI, 
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(production of - ui ui). Away from the wall, the velocity pressure-gradient term 
balances with P12, while the other terms arc small. Moving towards the wall, thc 
turbulent-transport term becomes important. Very close to  the wall, the dissipation- 
rate term and the viscous-diffusion-rate term become important. The sum of the two 
viscous terms (the viscous-diffusion term and the dissipation-rate tcrm) yields a term 
that is small throughout the channel, indicating that the viscosity plays a minor role 
in the dynamics of the Reynolds shear stress. The asymptotic behaviour of the 
various terms close to the wall is given by 

__ 

Plz = --(cz(Y+)~ + . . . . el, = 4 b , y y +  + . . . , Tlz = -5b1 c, cz(y+)* + . . . , 
D,, = 6 6 , ~ , + +  ..., Z7,, = - 2 6 , y y f +  . . . ,  (21) 

where b,c, z - 7  x lop4. The above expansions show that Plz and TI, decay much 
faster than the other terms as y + ~ 0 .  

The budget for k (figure 5 )  is half the sum of the budgets of the diagonal 
components of the Reynolds-stress tensor. We point out that away from the wall 
(y’ > 30) the argument often used, that  Pk = E ,  holds acceptably well. Moving 
towards the wall, the turbulent transport rate becomes important. It is a consuming 
term in the 30 > y+ > 8 range and a producing term very near the wall. In cEect it 
is transporting energy from the maximum source towards the wall. As we get closer 
to the wall, the dissipation rate balances with the viscous-diffusion rate plus the 
pressure-diffusion rate. At the wall, the dissipation rate is non-zero and is equal to 
the viscous-diffusion rate. The data show that 

elwwal, = 0.166. 

If we compare the above budget to  the budget of Laufer (see, for example, Townsend 
1976), we find that both the turbulent-transport rate and pressure-diffusion rate 
were overestimated by the measurements. The viscous-diffusion rate is under- 
estimated by Laufer’s data, which yields a lowcr dissipation rate a t  the wall. It 
should be noted that there is a large difference between the Reynolds numbers of the 
simulation and Laufer’s data. We expect the turbulent-transport terms, which are 
large-scale dependent terms, to be less sensitive to Reynolds-number dependence 
than the dissipation-rate terms, which are small-scale dependent terms. Our data is 
consistent with the data of Moser & Moin (1984) for a flow in a curved channel, and 
Spalart (1986, 1988) for flows over a flat plate. Near the wall, all simulation data 
show that the pressure-diffusion-rate term remains small compared to the other 
terms. However, very close to the wall the pressure-diffusion-rate term is of the same 
order as the difference between the dissipation rate and the viscous-diffusion rate. 

2.2. Dissipation-rate budget 

In the discussion of the Reynolds-stress transport, we have seen that far from the 
wall the dominant terms are the production rate, dissipation rate and velocity 
pressure-gradient terms. The production-rate term is a function of the Reynolds 
stresses and the mean velocity, and it does not need modelling. However, the rest of 
the terms need modelling. 

A set of equations describing the dynamics of eij can be derived from the 
Navier-Stokes equation, but doing so will introduce six more equations and more 
terms to be modelled. The alternative used in the Reynolds-stress modelling is to 
model the dissipation-rate tensor in terms of the Reynolds stresses and a turbulence 
timescale. In the case of isotropic turbulence, the combination of the turbulence 



R e y n o l d s - s t r e s s  and d i s s i p a t i o n - r a t e  b u d g e t s  in a t u r b u l e n t  channd $ow 23 

kinetic energy and the dissipation-rate term provides a timescale for the decay of the 
turbulence. The approach suggested by Davydov (1961), and taken by DH and 
Hanjalid & Launder (1972) (hereinafter referred to as HL1) is to introduce the scalar 
trace of the dissipation-rate tensor 

(22 )  6 = It. 

and to model eij in terms of uiui and c. In  this way one equation describing the 
evolution of e is needed for closure. The equation for 6 derived from the Navier-Stokes 
equation is given by 

2 22, 

~ 

We can identify the different terms on the right-hand side as (rate of.. .) 

P,' = - 2 ~ ; ~ ~  U ; , ~ S ( ,  mixed production, 

Pz = - 2 U ; , k u ; , ,  S,, 

P: = - 2 4  u ; , ~  U i , k m  

P: = - 2 4 ,  u;,, u;,, 

T, = - ( U ; U ; , ~  u; ,m),k 

production by mean velocity gradient, 

gradient production, 

turbulent production, 

turbulent transport, 

pressure transport, 

De = ' , k k  viscous diffusion, 

Y = 2u;,,, U; ,kn dissipation, 

where S,  = i ( U t , j +  U j , d )  is the mean strain rate. Tennekes & Lumley (1972) analysed 
the vorticity-fluctuation budget, which is related to the above budget for 
homogeneous turbulent flows. They inferred from an order-of-magnitude analysis 
that, in the high-Reynolds-number regime, the turbulent-production rate (P$) and 
the dissipation rate (Y) dominate the balance equation. However, they point out that 
the difference of these terms yields a term of the same order as the other terms. The 
various terms in the balance equation for 6 are shown in figure 6. The errors in the 
budgets are expected to be highest for this case, because the computation of the 
terms in (23) involve correlations of the derivatives. There are two sources of errors, 
numerical (truncation errors) and statistical (limited sample size). Unfortunately, 
we cannot assess these errors directly, for example by running a finer grid for a longer 
time. Rut an indirect measure of these errors is the imbalance in the budget. In  the 
case of the dissipation budget, the imbalance in the budget is less than 2% (of Y a t  
the wall) throughout the channel (less than 0.04% for y+ > 20). 

The present results indicate that Pf and Y are the dominant terms in the core 
region of the channel, in agreement with Tennekes & Lumley's analysis. Near the 
wall however, these terms remain large but are not larger than the other terms. Close 
to the wall (y' < 8) the mixed production rate P,' becomes of the same order as P:. 
I n  the range 6 < y+ < 15 the production rate (P,") is of the same order as P,". 

Very close to the wall (y' < 4), the profile of Y goes through a local minimum a t  
y+ z 2 and reaches a maximum at the wall. This behaviour is an artifact of the 
splitting of the u ; , , u ; ~ , ~ ~  term into a viscous diffusion rate and a dissipation rate 
term. Figure 7 shows that - Y +  D, does not exhibit this peak and shows a monotonic 
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FIGURE 6. Terms in the budget of the dissipation rate of the turbulence kinetic energy, e ,  in  wall 
coordinates. Pi = mixed production ; P," = production by mean velocity gradient ; P," = gradient 
production ; P," = turbulent production ; T, = turbulent transport ; D, = viscous diffusion ; Y = 
dissipation rate ; Z7, = pressure transport. 

decrease towards the wall. The total term might be simpler to  model. The models for 
the different terms in the €-equation will be discussed in the next section. 

Taylor-series expansion of the terms in the €-equation yields the following : 

Pt = 2 6 , y + + O ( ( y + ) 3 ) ,  

P," = 4 c , ( y + ) 2 + O ( ( y + ) 3 ) ,  

n, = -88C,+O(y+), 
_ _ _ _ _ _ _ _ _ _ _ _ _ _  

D6 = 4{'1,1 '1,l + '1,3 b 1 , 3 + b 3 , 3  b 3 , 3 + b 3 , 1  '3,1+ '(%+-+-) 
+ 2c,c,) + O(y+), 

_ _ _ _ _ _ _ _ _ _ _ _  
= 4{61,1 b l , l  + h , 3  6 1 , 3 + b 3 , 3  '3,3+'3,1 '3,l +2(c,c,+c,c,)}c,))+ O(y+). 

At the wall the pressure-transport-rate term balances with the diffusion-rate term 
and the dissipation-rate term. P," is of the order 1/Re, and can be neglected relative 
to the other terms. The above expansions show that P," = O ( ( Y + ) ~ ) ,  and the other 
production terms (P: and P,") are O(y+) close to the wall. 

2.3.  Velocity pressure-gradient terms 
We have seen in the budget of the Reynolds stresses that the velocity pressure- 
gradient terms play the dominant role in energy redistribution among the 
components. The expression for the velocity pressure-gradient terms has been 
extensively analysed and modelled by various groups. Unfortunately, because of the 
lack of experimental data, the present models have not been tested. The usual 



Reynolds-stress and dissipation-rate budgets in a turbulent channel Jlow 25 

0.03 E 
0.02 

Y 

D, 

D,- Y 

0.01 

0 

-0.01 

-0.02 

E I * I I I I I I j  I I j I I 1 I  $ 8 8 1  I I I I I I I , ,  I 

- Y  

0 20 40 60 
Y+ 

FIGIJHE 7. Split of the viscous term into a dissipation rate term, Y,  and a viscous diffusion 
term, 13,. 

approach in the analysis has been to  split the expression into a redistributive part 
and a transport part. The redistributive part is then analysed with the aid of the 
pressure Poisson equation. 

2.3.1. Pressures t ru in  split 

and redistributive term 
The velocity pressure-gradient term is usually split into a pressure-transport term 

17.. = -(p’(u~6j,,+u;6iik)),k+$ij, (25)  
__ 

where $ i j  = 2p’sij (and sij = & U : , ~ + U ; , ~ ) )  is known as the pressure-strain term. 
Substituting the Taylor-series expansion for pressure and velocities in the definition 
of & yields 

$11 = Zap b l , ,  y+ + . . . , q5,2 = 4 w y +  + . . . , q533 = Zap b3,3 y+ + . . . , 
__ 

= up b, + . . . . (26) 

For the case of a fully developed turbulent channel flow, the flow is homogeneous in 
the streamwise and spanwise directions and the split is irrelevant in these directions ; 
I7,, and 1733 are the pressure-strain terms. The Taylor-series expansions (equation 
(26)) show that the diagonal terms of 0 as y+ c, 0, while the $,,-component does 
not vanish at the wall. 

Figure 8 shows the distribution across the channel of the terms obtained by 
splitting IT,, into a transport term and a pressure-strain term. In this case the split 
produces terms that highly emphasize the presence of the wall. The reversal of the 
sign of the pressure-strain term near the wall was attributed by Moin & Kim (1982) 
to the ‘splatting’ effect. The split chosen in (25) is not unique (Lumley 1975); B. E. 
Launder (private communication, 1985) pointed out that  the use of a decomposition 
suggested by Lumley : 

(27) 

(28 )  

__ n.. 23 = -- 3% ..( P’U,),, + $;.> 

where 4; = - ((p’(.i’ Sjk + 11,; &) ),, - $Sij($Q, k) + fi;, j + 
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FIGURE 8. Split of the velocity pressuregradient term int=ressure transport term, (2). 2,  

and a pressurestrain term, p‘u;,,. 
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FIGURE 9. Split ofthe velocity pressure-gradient term, ITl,, i n t o r e s s u r e  transport term, 
(u; u;/2k)ITL,, and a redistributive term, IZ,, - (u;u;/2k)IZli. 

would reduce the negative levels of $2*, near the wall to about one-third of their 
current levels. A split suggested by the balance equation for the anisotropy tensor of 
the Reynolds stresses is as follows: 

where 

Note that the trace of & is zero and therefore Ji, is redistributive. Figures 9-12 show 
the distribution across the channel of the terms in (29) and (30). The negative levels 
of the redistributive 22 component near the wall are substantially reduced. In 
addition, the split suggests that a model for the trace of the velocity pressure- 
gradient term is needed rather than a model for the prcssure-transport vector. This 
might be easier to  achieve. 
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FIGURE 10. Split ofe velocity pressure-gradient term, n,,, i n e p r e s s u r e  transport term, 

(uku;/2k)l7,,, and a redistributive term, l7,, - (u;u;/2k)17,,. 
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FIGURE 11. Split ofthe velocity pressure-gradient term, n,,, in=pressure transport term, 

(u ;u j /2k) f f l , ,  and a redistributive term, n,, - (u; uj/2k)l7,,. 

2.3.2. Fast and return splitting 

equations 
An equation for the pressure fluctuation can be derived from the Navier-Stokes 

(31) -p;kk = 2u. .u! f u !  u! .-u: .uI . 
t . 3  3 d  2 . 1  ? , a  a,i 

with the Neumann boundary condition at the wall 

P:y  = v:,,. 

It is customary (see Lumley 1978, for example) to split the pressure into two parts, 
p’ = pl +p2,  one associated with the first term on the right-hand side of (31) and the 
other with the second and third terms. Most of the analyses used to model the 
pressure-strain terms consider homogeneous cases where the boundary conditions 
are not considered in the split. The Poisson equation and the boundary conditions are 

2 FLM 194 
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FIGURE 12. Split ofthe velocity pressure-gradient term, ZZ,,, in=pressure transport term, 
(ui uh/Zk)ZZ,,, and a redistributive term, ITl2- (u; u;/2k)ZZL,. 
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FIGURE 13. Split of pressure-strain term, q511, into a rapid term, $il, a return term, &l, and a 
Stokes term, #,. 

linear in p f .  Therefore, we can isolate the effects of the viscous terms at the wall by 
splitting the pressure into three parts, a ‘return’ part, a ‘rapid’ part, and (for the 
case of flows with walls) a ‘Stokes’ part. 

( i )  The rapid pressure, p’, is defined as the solution to the following problem: 

with the boundary conditions a t  the walls 

(ii) The return pressure, p 2 ,  is defined as the solution to 
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FIGURE 14. Split of pressure-strain term, $,,, into a rapid term, $&, it return term, &,, and a 
Stokes term, &,. 
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FIGURE 15. Split of pressure-strain term, &, into a rapid term, &, a return term, &, and a 

Stokes term, #J&. 

with the boundary conditions at the walls 

p;u = 0. (34b) 

(iii) And finally the Stokes pressure, ps ,  is defined as the solution to 

P?j, = 0, 

with the boundary conditions a t  the walls 

(35b)  s - ’  
P.ll - V,UY. 

This split resolves the question of whether to add the boundary conditions to the 
return part of the pressure or to the rapid part. It does not remove the effect of the 
wall on the rapid and return pressure. The pressure-strain terms are linear in p’ and 
therefore the Stokes pressure-strain statistics can be added to either the rapid 
pressure-strain terms or to the return pressure-strain terms. 

2-2 
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FIGURE 16. Split of pressure-strain term, q512, into a rapid term. q5&. a return term, #2. and a 

Stokes term, q5:z. 

The rapid part of the pressure-strain can be written analytically as follows 

(36) 

where G is the Green function with homogeneous Neumann boundary conditions at  
the walls. Note that most modellers neglect the surface integral terms that should be 
added to (36) if inhomogeneous Neumann conditions are used for the pressure. The 
use of homogeneous boundary conditions (equation (33 6)) at the walls for the rapid 
pressure is consistent with (36) and the approximation used by the modellcrs. The 
effect of the wall on the pressure is contained in the form of the Green function G. 

Figures 13-16 show the splitting of the pressure-strain term into the three 
components. For the case of the rapid part of the pressure-strain term is of the 
same order as the return part a t  y+ > 80. Close to the wall the return part is larger 
than the rapid part. The c$22 terms show that a t  y+ > 80 most of the correlation is due 
to the return part. Near the wall, the rapid part in this case has the opposite sign 
from the total term. The total term is consuming close to the wall, while the rapid 
part is producing. The q533 terms show that the rapid part contributes the most to this 
component. Close to the wall the return part becomes the main contributor. The 
q512 split shows that a t  y+ > 80 the return and the rapid terms are of the same order. 
Close to the wall the return is the main contributor to the total term. The behaviour 
of q5,, near the wall is much more complicated than that of Ji7 (equation (30)), which 
also suggests that Jij might be simpler to model. Except for &, which is negligible 
throughout the channel, the Stokes pressure-strain terms are significant only near 
the walls. 

3. Model testing 
In  the previous sections we presented the budget data for the channel. In  this 

section, we will use these data to evaluate some existing turbulence models. Our 
testing will be by direct comparisons of the terms in the budget with the model 
expression using the channel data. 
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3.1. Dissipation-rate models 
3.1 . I .  Algebraic models for eij 

be aligned with the Reynolds-stress tensor and can be modelled as 
Rotta (1951 a )  argued that in the limit as Re ++ 0, the dissipation-rate tensor will 

He also argued that in the limit Re H 00, the dissipation-rate tensor is isotropic. This 
idea was used by HL2 who argued that the model for the dissipation-rate tensor 
should take the following form : 

where they inferred from the experimental data that f, is a function of the turbulence 
Reynolds number ( k 2 / e )  as follows: 

The assumed form in (38) implies that the anisotropy tensor of t’he Reynolds stress 
and the anisotropy tensor for the dissipation rate are related as follows: 

dij = fs bij, (40) 
__ 

where d ,  = c t j / ( 2 e )  -is, and bij = u; u ; / ( 2 k )  -idij. 
Lumley & Newman (1977) identify a turbulence state in terms of the second (11) 

and third (111) invariants of the Reynolds stress anisotropy tensor (b i j ) .  They have 
shown that turbulence states can be identified on a -11 us. 111 map (anisotropy map) 
and that due to the properties of b,, turbulence states are limited inside the region 
bounded by the two axisymmetric states and the two-dimensional state (see figure 
17) .  It can be shown that the states of the dissipation anisotropy tensor (d i j )  are also 
contained in the same region as the b,  tensor (for more detail, see Lee & Reynolds 
1985). If we neglect the d,, and the d,, components of the tensor compared to the 
other components (for a large enough sample they are negligible), we can use the 
budget results presented in the previous section to compute the variation (as a 
function of y+) of d, on the anisotropy map. Figure 17 shows the points for di j  and 
bii on the anisotropy map for different y+ locations in the channel. Figure 18 shows 
the points for d, and the curve for the right-hand side of (40). We note that the states 
of turbulence producing the dissipation-rate tensor vary from a nearly isotropic state 
in the centre of the channel to  a two-dimensional state close to the wall. The model 
(equation (40)) clips the transition from the almost two-dimensional state near the 
wall to the state in the core region. Close to the centre, the model is closer to the 
axisymmetric state than the data would indicate. The fact that the dissipation-rate 
tensor is close to a two-dimensional state near the wall is an indication that the 
variation in dii near the wall is due in part to wall-proximity. Near the wall, the 
normal component to the wall is suppressed and the anisotropy tensor approaches 
the line of the two-dimensional state. At around y+ z 3.5 the state of the dissipation 
anisotropy tensor is closest to the one-dimensional state. The bij tensor will also vary 
from a two-dimensional state near the wall to  the nearly isotropic state in the core 
region. In  fact, if we assume that f, = 1 (i.e. that the anisotropy tensor of the 
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FIGURE 17. Anisotropy invariant map. 0, dij  at various y+ in the channel; -, btj a t  various 
y+ in the channel. 

0.2 
- I1 

0.1 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

111 

FIGURE 18. Anisotropy invariant map. 0, dij  at various y' in the channel; --, model, 
equation (40). 

dissipation rate and the anisotropy tensor of the Reynolds stress are equal), we find 
(figure 17) better agreement between the data and the model. It is possible that this 
agreement is because KMM's flow is a t  low Reynolds number. Comparison of the 
anisotropy invariant map of b, with the map of di j  shows that in the core region, the 
dissipation anisotropy is closer to the axisymmetric state than is the Reynolds stress 
anisotropy. We point out that  close to the wall, Taylor-series expansions of di j  and 
b, show that they are equal only up to O(y+). For example, d , ,  and b,, approach 0 
as y+wO, but the ratio of the two terms will yield d 1 2 / b l , w 2  as y w 0 .  In  fact, 
Launder & Reynolds (1983) proposed a model that  will have the proper limits (for the 
ratio of the component of bij and d t j ) ,  but using the values of the constants (a and p) 
recommended by them will yield a model that  is tensorially incorrect : e.g. the trace 
of cii and the trace of their model are not equal. 

Figures 19-22 show the four components of cii compared to  the components of the 
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FIGURE 19. Distribution of ell across the channel. 0, cl&rm computed from the channel 

da ta ;  --, model, ( e l k )  u; ui. 
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FIGUKE 20. Distribution of eZ2 across the channel. 0, e&m computed from the channel 

data  ; -, model, ( e / k )  u; u;. 

__ 
model, eii = eui u i / k .  The off-diagonal component shows the largest difference 
between the model and the data. The diagonal components show better agreements 
but would require a different function, f , ,  for the different components to obtain an 
improvement in the agreement. 

3.1.2, Transport models for e 
Almost any type of one-point closure model would require a timescale or a 

lengthscale model. Often, the dissipation rate of the turbulence kinetic energy is used 
to  obtain these scales. In  addition to the equations for the transport of the Reynolds 
stresses, an equation for the transport of the trace of eii which is twice the dissipation 
rate of the turbulence kinetic energy, e (see equation ( 2 3 ) )  is used. The terms in the 
equation of E have been modelled by a number of workers (see for example Davydov 
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FIGURE 22. Distribution of cI2 across the channel. 0, EuLrm computed from the channel 

data; -, model, ( e l k )  u; u;. 

1961 ; DH; HL1; Lumley & Khajeh-Nouri 1974; HL2). Most of the current models 
for the &-equation can be written as the sum of a production term, a dissipation term, 
a turbulent transport, and a viscous diffusion term 

D & €2 

--€ Dt = k C,,-Pk-c, ,-+Cc, k 

where Pk = +Pll is the production rate of the turbulence kinetic energy, Cell C,, and 
C, are constants or functions of the turbulence Reynolds number. The disagreement 
is in the correspondence of the modelled expression with the exact equation. Lumley 
& Khajeh-Nouri (1974) ; and later HL2, associated the right-hand side of (41) with 
the difference between P: and Y (see equation (23)) and did not identify a model for 
each term in the balance equation. Davydov (1961) and HL1 combined the 
production terms P,' and P," and modelled them as follows: 

P,1+P,2 = -C~,,-u;U,:s, &- = C,,-P,. & k k 
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FIGURE 23. Distribution of the production term, Pf + P,", in the budget of e across the channel ; 

0, term computed from the channel da ta ;  -, model, equation (42). 

P:- Y 
yo O O O * 

0 

0 0  
- O . O ' P  00 O o 0  

I - 0.02 

0 10 20 30 40 50 60 

Y+ 
FIGURE 24. Distribution of the dissipation term, P,"- Y ,  in the budget of E across the channel. 

0, term computed from the channel d a t a ;  -, model, equation (44). 

HL2 recommend C,, = 1.275. Figure 23 shows the above model compared to the 
data ; the agreement is good away from the wall. The model predicts the production 
very well away from the wall. In the near-wall region, however, the peak in the 
production of e is underpredicted and a modification to the model is needed in this 
region. 

HL1 combined the production term Pt with Y and modelled the combination 
as 

€2 

k -pp+ Y = Ce2-. (43) 

The right-hand side of (43) approaches co as y I-+ 0. HL2 modified the model for the 
dissipation rate of e using a modified dissipation rate of k, E" = ~ - - 2 ( ( k : ) , ~ + ) * ,  which 
ensures that the ratio Elk is bounded as y+1-*0. They also argued that turbulence 
data indicate that the dissipation rate of B is a function of the Reynolds number. This 
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FIGURE 25. Distribution of the turbulent transport term. Tc, in the budget of F: across the 

chamel. 0, term computed from the channel d a t a ;  -. model. equation (45). 

functional was accounted for by introducing a damping function. If the model of 
HL2 represents a model for the left-hand side of (48), we have 

where C,, = 1.8, and f, = 1 -% exp [ - (k2/6e) ' ] .  Figure 24 shows the above model 
compared to the data. In  the core region, the model and the data show good 
agreement. Close to the wall. the model underprediats the data. 

The turbulent transport of E is modelled by HL1 as 

where G, = 0.15. Figure 25 shows the model compared to the data. This term is small 
compared to the other terms in the budget equation and the disagreement between 
the model and the data is small compared to the errors in the other terms. The 
production rate, P,", and the pressure diffusion rate, II,, were neglected by HL1, and 
the present data also show that these terms are small. 

3.2. Pwssure-strain mod& 

Most models used for the velocity pressure-gradient expression are based on splitting 
the expression into a pressure-strain term and a pressure-diffusion term. The 
pressure-diffusion term is either added to the turbulent transport term or neglepted. 
Several models for the pressure-strain term exist that use different approximations 
and arguments to provide closures for the tcrm. Most of these closures are based on 
homogeneous flow arguments. I n  this section, we will test the closure of LRR for the 
pressure-strain term that was developed for wall-bounded flows. I,KR split the 
pressure-strain term into a return term, a rapid term, and a wall term. For the return 
terms, $tj, they recommend the use of the model proposed by Etotta (1951a), 
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FIGURE 26. Pressurestrain term, x, in the budget equation for u',u; across the channel. 0, term 
computed from the channel d a t a ;  -, model, (equations (46) + (48) + (49)) ; ---. model; 
equation (46) ; -.-, model, (equations (48) + (49)). 
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FIGURE 27. Pressure-strain term, K,  in the budget equation f o r a a c r o s s  the channel. 0, term 
computed from the channel da ta ;  -, model, (equations (46) + (48) + (49)) ; ---, model, 
equation (46). -.-$ model, (equations (48) +(49)). 

where C, is a model constant. They modelled the rapid term by assuming that the 
mean velocity gradient is slowly varying and write 

$ij = uL,magi.  (47) 

They then assumed that a r  is linear in the Reynolds stresses. Substitution of the 
linear approximation for ug6 into the expression for $tj yields 

where Aij  = - (G U k , j  + Uk, , ) .  The above model also has one adjustable 
constant, C,. The value of the constants C, = 1.5 (for the return term) and C, = 0.4 



38 N .  N .  Mansour, J .  K im and P .  Moin, 

0 50 100 150 

Y+ 

FIGURE 28. Pressurestrain term, K, in the  budget equation for across the  channel 0, term 
computed from the channel da ta ;  --, model, (equations (46) + (48)+ (49) ) .  ~ --. model. 
rquation (46) --.-, model. (equations (48) + (49)). 

were chosen by LRR by matching the homogeneous shear experiment of Champagne, 
Harris & Corrsin (1970). 

By examining the case of wall-bounded flows, LRR argued that a third term, $:. 
is needed to account for near-wall effects, corresponding to the reflected wall 
influence of q5tj + $:j. They argued that the model for the wall effects should take the 
same form as q5tj and using near-wall data, the wall effect on the pressure-strain 
was modelled as 

Figures 26-28 show comparisons of LRR’s model for the diagonal terms to the 
data. The comparison for the off-diagonal term is similar, the agreement is acceptable 
away from the wall, but is poor close to the wall. We have also shown the distribution 
of the individual terms. Rotta’s return model does not vanish at  the wall; while, as 
can be seen from the Taylor series expansions (equation ( 2 6 ) ) ,  the diagonal terms 
should vanish a t  the wall. This is an indication that LRR’s model will behave poorly 
close to the wall because of the return model. It is clear that Itotta’s model should 
be modified to include the correct behaviour near the wall. In  fact, the model without 
Rotta’s return model shows the proper trends, and it will be better than the full 
model. 

3.3. Turbulence-transport models 
The nonlinearity of the equations of motion introduces higher-order moments when 
equations for the moments are derived. For the Reynolds-stress equations, the triple- 
correlation terms need either to be closed or to havc an equation derived for them. 
The need for equations describing the evolution of the turbulent-transport term 
(T,,, = uiuiu;) was suggested by Chou (1945a) and Davydov (1959). But using 
closures a t  the triple-correlation level will add ten morc equations to the system of 
equations to be solved. However, the transport equations for I’,,, are used to derive 
closures for the triple-correlation terms. The construction of thc rnodel for the 
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transport terms starts (see HL1; Lumley 1978) with the governing equation for the 
transport terms, 

~ _ _ _ _ _ _  
+(U;u;u;u;),, = -{u;u;p~i+u;u;p~k+U;u;p~j}+{ui’u;u;,,,+ui’u;u;,,,+u;u;u;,ll}. 

(50)  

Davydov neglected the second term on the right-hand side of (50). He also argued 
that in an analogy to the pressure-strain model, the remaining term on the right- 
hand side should be modelled as -CD (e/k)T,,. To close the quadruple-correlation 
term, Millionshchikov’s zero-fourth-cumulant hypothesis (Monin & Yaglom 1975, 
p. 241) is often invoked 

(51) 
-- -- ____ (u’ Z i j k  u‘ u’ u’ ) = u; u; u; u; + u; u; u; u; + u; u; u; u;. 

Using the above closure in the triple-correlation equations, we have 

€ - - -C&-Tijk. (52 )  
k 

lf  we use the assumption of HL1 (that the transport terms are in equilibrium) and 
drop the D/Dt term, the model for the triple correlation will close as follows: 

~ _ _  -- -- 
= ( U ~ U ; ( u ~ u ; ) , z + u ; U ~ ( u ; U ~ ) , l + u ; U ~ ( u ; u ~ ) , l ) .  (53)  

In addition to the equilibrium assumption, HL1 assumed that the production terms 
are negligible and wrote the model for the triple correlation as follows 

k--- ____ 
- u; u; u; = c, - (u; u;(u,: u;), , + u; u; (u; u;,,, + u; u; (u; u;),,}. 

8 
(54) 

For the case of no mean velocity gradients, the two models (equations (53) and (54)) 
are the same (with Cb = i/Cs). If we use the expression given by (53) to model the 
transport terms, we have for the channel case 

The above expressions show that the production of the triple correlation in the fully 
developed channel will affect the TZl1 and T,,, components only ; the largest effect is 
on the lkll component. Figure 29 shows the models for ?ill given by (53) and (54) 
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FIGURE 29. Triple-correlation term -uk u; u; across the channel. 0, term computed from the 
channel data ; -, model, equation (53) ; - - - - -, model, equation (54). 
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FIGURE 30. Triple-correlation term -uiu;u; across the channel. 0, term computed from the 

channel da ta ;  -, model, equation (54); - - - - - ,  model, equation (55). 

(with C, = l/C& = 0.11) compared to the data. These results indicate that both 
models do not agree well with the data and that including the production term does 
not improve the model. The extra effort involved in inverting the coupled system 
given by (53) is not justified. 

A simpler form for the transport __ term was derived by DH using the recipe that 
turbulence transport of a quantity, u; $', should be modelled as K u; ui $ , l .  Following 
this recipe, they modelled the transport term as 

~- 

k-- - -  
- u; u; u; = c; - u; u;(u; qt .  

€ 
(55) 

Although this model is tensorially incorrect, as pointed out by HL1, i t  is often used 
because of its simplicity. LRR recommend C, = 0.11 and CL = 0.25 (based on 
numerical experimentation) for the values of the constants in the models. Figures 
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FIGURE 31. TriI)Ie-(.Orrelation term -‘ui ui? i ;  across the chaiinel. 0. term computed from t,he 
channel da ta ;  ---, model; equation (54) ; -- model. eyuat,ion (55). 
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Fwum 32 TriI’le-correlatlon term -u;u;uj across the channel 0 term computed from the 
chantiel d a t a ,  -. modrl, equatiou (54) ,  ---, model, equation (55) 

30-33 show the comparisons of the models given by (54) and (55) with the data. We 
can see that the simpler (and tensorially incorrect) model of DH performs as well as 
HLl’s model and, for the case of the Tz,, component, better than the model of HL1. 
Considering the simplicity of both models, the trends predicted by the model are 
acceptable except for TZs3 where the sign of the slope close to the wall is not predicted 
correctly. 

We note that both HLl’s and DH’s models do not have the proper behaviour near 
a wall; for example uiu;u; = O((Y+)~)  as y+i-+O. The different terms in the 
expressions of the model will asymptote as y+ ++ 0 as follows : 

k = o((y+)2), 
__ 
u;u; = 0 ( ( ~ + ) 3 )  for I + 2 ,  

__ 
u; u; = O( (y+)4). 
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FICURB; 33. Triple-correlation term -uiu; ui across the channel 0. term computed from the 
channel da ta ;  -, model, equation (54); ----, model, eyuation (55) 

k--- __ 
Therefore, 

-u; u; (u;u;),2 = O((y+)9). 
€ 

The model for u; uk u; will not have the proper behaviour as y' t-+ 0. However, the 
asymptotic behaviour only holds extremely close to the wall (y' < 5) and should not 
be the sole determining factor in evaluaking a model. 

4. Summary and discussions 
We have used the channel data of Kim et al. (1987) to compute the terms in the 

transport equations for the Reynolds stresses and to compute the terms in the 
transport equation for the dissipation rate of turbulence kinetic energy. It is 
important to recognize that the simulation data is a t  low Reynolds number and that 
the present conclusions may be valid only for low-Reynolds-number flows. In 
particular, the results near the wall related to dissipation rates are sensitive to 
Reynolds-number dependence. The budgets reveal that  several terms that were 
negligible away from the wall become important close to  the wall. The budget for the 
turbulence kinetic energy reveals that, contrary to the commonly held belief (see for 
example Townsend 1976), the pressure-strain term near the wall is not of the same 
order as the production term away from the wall. In  fact, the pressure term remains 
small relative to the dissipation rate and the viscous-diffusion rate. Away from the 
wall, the budget for the dissipation rate of the turbulence kinetic energy reveals that 
the turbulent production term and the dissipation rate are the dominant terms as 
estimated by Tennekes & Lumley (1972). Close to the wall, all the production terms 
become important. I n  considering the velocity pressure-gradient term, we have 
shown that different splits of the velocity pressure-gradient term will give different 
behaviours near the wall and that a judicious choice may be necessary. 

For wall-bounded flows, we have shown that the inhomogeneous boundary 
condition on the pressure introduces a third term in the split of the pressure and have 
recommended that the pressure be split into a rapid term, a return term, and a Stokes 
term. We find that the rapid and the return terms in the channel are of the same 
order, and we cannot neglect one with respect to the other. The 22 component of the 
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pressure-strain term shows that the rapid part in fact has the opposite sign as the 
total term. Away from the wall the rapid part is consuming, while the total term is 
producing. Close to the wall the total term is consuming (the splatting effect), while 
the rapid part is producing. 

Comparison of closure models with the data reveals that the pressure-strain term 
needs immediate attention and the model of Launder et al. (1975) has difficulty. As 
a first approximation, the anisotropy tensor for the dissipation rate of the Reynolds 
stresses may be modelled in terms of the anisotropy tensor of the Reynolds stresses. 
The budget for the dissipation rate of the turbulence kinetic energy is modelled well 
away from the wall; close to the wall, improvements are needed. Finally, the 
transport term can also be improved upon. Overall, the closure models are better 
than expected for the budget of the dissipation rate of the turbulence kinetic energy 
and are generally inadequate for the pressure-strain correlations. 
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