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The budgets for the Reynolds stresses and for the dissipation rate of the turbulence
kinetic energy are computed using direct simulation data of a turbulent channel flow.
The budget data reveal that all the terms in the budget become important close to
the wall. For inhomogeneous pressure boundary conditions, the pressure—strain term
is split into a return term, a rapid term and a Stokes term. The Stokes term is
important close to the wall. The rapid and return terms play different roles
depending on the component of the term. A split of the velocity pressure—gradient
term into a redistributive term and a diffusion term is proposed, which should be
simpler to model. The budget data are used to test existing closure models for the
pressure—strain term, the dissipation rate, and the transport rate. In general, further
work is needed to improve the models.

1. Introduction

The advancement of large-scale computers has led to the wide use of turbulence
models to predict turbulent flows. At the 1980-81 AFOSR-HTTM-Stanford
confercnee, phenomenological models of all categories (one-, two- and Reynolds-
stress-equations) were used to model various flows. The anticipated result, that
transport models for the Reynolds-stress equations will outperform eddy-viscosity-
type closures, did not happen. In fact, in simple flows, mixing-length models
produced results as good or better than Reynolds-stress models. However, the same
Reynolds-stress models were used in a variety of flows to simulate quantities that
simpler models could not model. The possibility of using the same model with the
same constants for a variety of flows is the main motivation behind developing
models at the Reynolds-stress level.

According to Lumley (1978), the history of ‘higher-order” modelling dates as far
back as Kolmogorov (1942), who was the first to suggest the characterization of
turbulence by its intensity and scale. Chou (19454a) considered the full Reynolds-
stress equations and the triple-correlation equations to close the averaged
Navier-Stokes equation. He suggested that the use of equations up to third moments
is sufficient to characterize turbulent flows and, with simplifications, he predicted the
mean velocity profile of a turbulent channel flow (Chou 1945b) which is the flow of
interest in this work.

Rotta (1951 a) developed closure models for the Reynolds-stress equations and
advanced models for the pressure—strain and the dissipation-rate terms that are the
basis for several of the present-day models. In a follow-up paper, Rotta (1951b)
introduced an equation for the turbulence lengthscale and tested his models by
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simulating a turbulent channel flow. He found that the peak in the turbulence
intensity could not be predicted by his theory. Davydov (1959) proposed closures at
the Reynolds-stress and the triple-correlation equations levels. Later, Davydov
(1961) proposed closures for the equation of the dissipation rate of the turbulence
kinetic energy (¢) which are used by most present-day e-equations. Daly & Harlow
(1970) (hereinafter referred to as DH) used various ideas to close the Reynolds-stress
equations and used gradient-transport to model the turbulent diffusion terms. They
added the scalar equation representing the trace of the dissipation-rate tensor to the
Reynolds-stress equations. They also computed the channel flow with mixed success
in predicting the Reynolds-stresses. Launder, Reece & Rodi (1975) (hereinafter
referred to as LRR) advanced closure forms to the Reynolds-stress equations that
were tested for a variety of turbulent flows. Their models were developed for high-
Reynolds-number flows. Hanjalié¢ & Launder (1976) (hereinafter referred to as HL2)
extended the model of LRR to simulate low-Reynolds-number turbulence and the
near-wall region. HL2 computed the channel flow and found that their model
underpredicts the peak in the turbulence kinetic energy by 30 %. More recently, Shih
& Lumley (1986) proposed closure forms to the pressure-strain terms that seem to
hold promise but did not use the model to compute to the wall (wall functions were
used in the near-wall region).

All of the work on turbulence modelling development uses indirect methods to test
the various closure models. Because of the difficulty in measuring pressure and
velocity with sufficient spatial accuracy, direct comparison of the closure models
with experimental data has not been possible. Often, the adequacy of the model is
judged by computing a flow with the model and by comparing the predicted mean
velocity and Reynolds stresses with experimental data. With the advent of large-
scale computers and new algorithm developments, direct simulations of turbulent
flows are now possible at moderate Reynolds numbers. These simulations are being
used to compute the terms in the budget of the Reynolds stresses. It is then possible
to test the closure models by direct comparison of the closure formula with the term
being modelled.

A comprehensive testing of one-point closure models using simulation data was
carried out by Rogallo (1981) where he tested different pressure—strain models for
homogeneous flows under mean strain and shear. Recently, direct simulations of
simple inhomogeneous flows have been carried out by Kim, Moin & Moser (1987)
(hereinafter referred to as KMM), Moser & Moin (1984) and Spalart (1986a, ). KMM
computed the fully turbulent channel flow using two different grid resolutions
(2% 10% and 4 x 10% grid points) and found no dependency of the results on grid
resolution. They compared their results with experimental data and were able to
study the behaviour of turbulence correlations near the wall. Although some
disagreements exist between experimental data and computed results, especially in
the near-wall region, the overall agreements were good. KMM attributed the
differences to possible probe errors due to wall proximity. Moser & Moin computed
a channel flow with mild streamwise curvature. They showed that the presence of the
Gortler vortices contributes substantially to the shear stress. They also computed the
terms in the budget of the Reynolds stresses. Spalart (1986) computed boundary-
layer flows with favourable pressure gradient and more recently (Spalart 1988)
computed turbulent boundary layers with zero pressure gradient up to Re, = 1410,
These simulations were carried out at moderate Reynolds numbers and were used to
compute the Reynolds stresses and the terms in their budgets.

The objective of this work is to present the budget data for the Reynolds stresses
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and the budget data for the dissipation rate of the turbulence kinetic energy using
the flow fields of KMM. These budgets are needed for model development because
they will provide a direct means to evaluate closure models. The budget data for the
digsipation rate of the turbulence kinetic energy have eluded measurement
techniques and will provide valuable guidelines for model developers and model
testing. We will use these budgets to evaluate some existing algebraic models for the
dissipation rate of the Reynolds stresses. Closure models for the budget of the
dissipation rate of the turbulence kinetic energy will be evaluated. We will also
compare with the data some existing models for the pressure-strain and the
turbulent transport rate of the Reynolds stresses.

2. Channel data analyses

The use of direct simulation to computc turbulent flow fields will be restricted to
simple flows for the foreseeable future. The flows of engineering interest are
simulated using the averaged Navier-Stokes equations in conjunction with closure
models. With the advent of large computers, the trend will be towards using closures
at the level of the budget for the Reynolds stresses.

2.1. Reynolds-stress budget

The transport equations for the Reynolds stresses are derived from the Navier-
Stokes equations by ensemble averaging the equations, then deriving equations for
the fluctuating stresses and ensemble averaging these equations. For incompressible
turbulent flow, the transport equations non-dimensionalized with u}/v (the wall-
shear veloeity, u, = (VU,y| wau)% and the kinematic viscosity, v) are given by

D——;
Euiujzpij‘*’Tij‘*‘Dij‘*’Hij—eij, (1)
where D/Dt = 0/t + U, 0/0x,, and the terms on the right-hand side of the above
equation are identified as follows:

Py =—[u;w U; o +uwjui U o production rate,
€ = 2] LU dissipation rate,
Ty = —(u; u]’ )k turbulent transport rate,
e . 1 .
Dy; = (ujuf) viscous diffusion rate,
II; = —(uip/; +ujpy) velocity pressure-gradient term.

Repeated indices imply summation over 1, 2, 3 and the indices (1, 2, 3) are used to
denote the streamwise, x*, normal to the wall, y* and spanwise, z*, directions
respectively. In the above equation and in what follows, p’ is a non-dimensional
kinematic pressure. All quantities are { }* quantities, but the superseript 4+ will be
used for the coordinate variables only to simplify the notation. In a fully developed
channel, the flow is homogeneous in the strcamwise (x*) and the spanwise (z%)
directions. The relevant non-zero stresses in this case are wujup, uyu,, uzu, and
u} uy. Figures 1-4 show the terms in the budget of these stresses using the flow fields
of KMM. The simulation flow fields are for a channel flow at Reynolds number Re,
=, d/v = 180 based on wall-shear velocity (u,) and channel half-width (8). This
corresponds to Reynolds number 3200 based on mean centreline velocity and 4. The
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Figure 1. Terms in the budget of w;u; in wall coordinates. P,, = production; 7, = turbulent

transport; D), = viscous diffusion; ¢, = dissipation rate; II,, = velocity pressure—gradient
term.
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Fieure 2. Terms in the budget of %, u; in wall coordinates. 7,, = turbulent transport; D,, =
viscous diffusion; ¢,, = dissipation rate; IT,, = velocity pressure-gradient term.

budget for the turbulence kinetic energy k = 1(u] u; +uju; +uj; u;) is shown in figure
5. The profiles for the different terms in these budgets (scaled by u?/v) are similar in
shape and magnitude to those of Moser & Moin (1984) and Spalart (1988).

To analyse the near-wall asymptotic behaviour of the different terms in the budget
equations, we will expand the instantaneous velocity and pressure in Taylor series
about-the-wall values as follows:

uy=by e yti+d i+

=
It

oy i+d,yti ...
Uy =boy eyt +d T+

=3
[

=a,+b,y" +e,yTP+dy+ .,
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FigUrE 3. Terms in the budget of u;u; in wall coordinates. T, = turbulent transport; D,, =
viscous diffusion; e, = dissipation rate; I13; = velocity pressure-gradient term.
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FicUrE 4. Terms in the budget of ] u; in wall coordinates. P,, = production; T}, = turbulent
transport; D,, = viscous diffusion; €,, = dissipation rate; /7,, = velocity pressure—gradient term.

where the coefficients a,,b;,b,, ... are functions of ¥, z* and ¢. The coefficient ¢, in
the u} expansion is related to the coefficients b, and b; through the continuity
equation

2¢y = — (b, +b3,3)- (3)

The first coefficient, a,, in the pressure expansion is related to the coefficients ¢, and
¢4 through the 2- and z-momentum equation

a,, = 2¢,,

a, 3 = 2¢,,

which implies that €13 =Cg1- (5)
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Fieure 5. Terms in the budget of the turbulence kinetic energy, &, in wall coordinates. P, =
production ; T}, = turbulent transport; D, = viscous diffusion; ¢, = dissipation rate; IT, = velocity
pressure—gradient term.

The second coefficient, b, in the pressure expansion is related to the coefficient c,
through the y-momentum equation
b, = 2c,. (6)

r

Finally, the third coefficients, d; and d,, in the velocity expansions are related to
b, and b,, through the y-partial derivative of the - and z-momentum equations

6dl = bl,t _2b1‘11 ‘—ba,:n —b1,33v (7)
6d3 = bB,t_2b3,33—b1,13-—b3,11‘ (8)

Using (2) and (3) in the expression for the Reynolds shear stress, —u;u;, yields
—uyuy = by by 3y +. . (9)

Chapman & Kuhn (1986) have used the ‘splatting argument’ to show (and the data
of KMM confirm) that near the wall the first term in the expansion of uju, is
positively correlated. The data of KMM show that b, b, ; = 1.4x 107, In the fully
developed channel, the mean velocity near the wall will vary as,

U=y"—(y")?/(2Re)+... (10)

Substituting (9) and (10) into the expression for the production-rate term of the
up u; yields
By=bby5(y7)°+... (11)

Figure 1 shows that the production term in the u[w] budget is the dominant
‘producing’ (positive) term in the range y* > 10. Moving towards the wali, the
turbulent transport term becomes positive at around y* = 10. Then the viscous-
diffusion term becomes positive at y* & 5, while the production term—0 as (y*)>.
Taylor-series expansion about the wall of the viscous-diffusion-rate term yields

Dy, = 2b,b,+12b, ¢,y +. .., (12)

where from the data b, b, = 0.13. At large y* the dissipation-rate term and the
velocity pressure-gradient term are both negative, and of the same order of
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magnitude, and they balance the production rate. Moving towards the wall the
velocity pressure-gradient term tends towards zero. The asymptotic behaviour close
to the wall of IT, is

T, =—4bc,y*+..., (13)

where from the simulation we have —b, ¢, = 8.5 x 107, The dissipation rate term
remains large at all y* and does not vanish at the wall

€, =2b,b,+8b,c,y"+.... (14)

The above expansions show that close to the wall the dissipation rate balances the
viscous-diffusion rate plus the velocity pressure-gradient term. At the wall the
viscous diffusion rate is equal to the dissipation rate.

The budget for the u; u; component of the Reynolds-stress tensor (figure 2) shows
that the turbulent transport rate 7}, is of the same order as the other terms through
most of the channel. Close to the wall this term decays faster than the other terms.
The u), «, budget does not have a production term but the velocity pressure-gradient
term is the dominant producing term. The dissipation-rate term is the dominant
consuming term. The viscous-diffusion-rate term is small compared to the other
terms except very close to the wall (y* < 20). Taylor-series expansion of the viscous-
diffusion-rate term, D,,, in the near-wall region yields

Dy, = 125,05,y + ... (15)

From the simulation we have ¢,c, = 7.4 x 1072, Equation (15) shows that close to the
wall the diffusion rate is positive. Expansion of the dissipation-rate term e,, yields

€y = 8T C5(y )P+ ... (16)
Finally, expansion of the velocity pressure-gradient term yields
11, = —45,C(y")" + ... (17)

As expected, close to the wall I1,, balances with D,, —¢,,. The expansion (17) shows
that I1,, is negative close to the wall.

The budget for the u; u; component of the Reynolds-stress tensor (figure 3) shows
that away from the wall the ‘producing ’ term is the velocity pressure-gradient term.
The dominant consuming term is the dissipation-rate term. Moving towards the wall,
the velocity pressure-gradient term decreases as

o, =—4b,c,y"+.... (18)

From the simulation we have —b,¢, &~ 4.4 x 1072, The viscous-diffusion-rate term
becomes important close to the wall and reaches a maximum at the wall

Dy, = 25, b, + 120, 63y + ... (19)

From the simulation data we have b,b, = 3.76 x 1072, The dissipation-rate term also
reaches a maximum at the wall. The near-wall behaviour of ¢, is given by

€55 = 2D5 by +8by oy  + . ... (20)

At all y* the turbulent transport rate T}, remains small compared to the other terms.
This is in contrast with 7,, which is of the same order as the other terms in the budget
of uj us. o L

As in the budget of u;u], the budget for uju, (figure 4) is dominated by B,
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(production of —u|uj). Away from the wall, the velocity pressure-gradient term
balances with P,,, while the other terms are small. Moving towards the wall, the
turbulent-transport term becomes important. Very close to the wall, the dissipation-
rate term and the viscous-diffusion-rate term become important. The sum of the two
viscous terms (the viscous-diffusion term and the dissipation-rate term) yields a term
that is small throughout the channel, indicating that the viscosity plays a minor role
in the dynamics of the Reynolds shear stress. The asymptotic behaviour of the
various terms close to the wall is given by

P, =00y ., ey =4bieyt+..., T =—5bce(yt)+.. .,
Dy, =6bc,y™+..., I,=-2bc,y"+..., (21)

where b, ¢, ~ —7x 107*. The above expansions show that P, and 7}, decay much
faster than the other terms as y*—0.

The budget for £ (figure 5) is half the sum of the budgets of the diagonal
components of the Reynolds-stress tensor. We point out that away from the wall
(y* > 30) the argument often used, that P, = ¢, holds acceptably well. Moving
towards the wall, the turbulent transport rate becomes important. It is a consuming
term in the 30 > y* > 8 range and a producing term very near the wall. In effect it
is transporting energy from the maximum source towards the wall. As we get closer
to the wall, the dissipation rate balances with the viscous-diffusion rate plus the
pressure-diffusion rate. At the wall, the dissipation rate is non-zero and is equal to
the viscous-diffusion rate. The data show that

€| wan = 0.166.

If we compare the above budget to the budget of Laufer (see, for example, Townsend
1976), we find that both the turbulent-transport rate and pressure-diffusion rate
were overestimated by the measurements. The viscous-diffusion rate is under-
estimated by Laufer’s data, which yields a lower dissipation rate at the wall. It
should be noted that there is a large difference between the Reynolds numbers of the
simulation and Laufer’s data. We expect the turbulent-transport terms, which are
large-scale dependent terms, to be less sensitive to Reynolds-number dependence
than the dissipation-rate terms, which are small-scale dependent terms. Our data is
consistent with the data of Moser & Moin (1984) for a flow in a curved channel, and
Spalart (1986, 1988) for flows over a flat plate. Near the wall, all simulation data
show that the pressure-diffusion-rate term remains small compared to the other
terms. However, very close to the wall the pressure-diffusion-rate term is of the same
order as the difference between the dissipation rate and the viscous-diffusion rate.

2.2. Dissipation-rate budget

In the discussion of the Reynolds-stress transport, we have seen that far from the
wall the dominant terms are the production rate, dissipation rate and velocity
pressure-gradient terms. The production-rate term is a function of the Reynolds
stresses and the mean velocity, and it does not need modelling. However, the rest of
the terms need modelling.

A set of equations describing the dynamics of ¢; can be derived from the
Navier—Stokes equation, but doing so will introduce six more equations and more
terms to be modelled. The alternative used in the Reynolds-stress modelling is to
model the dissipation-rate tensor in terms of the Reynolds stresses and a turbulence
timescale. In the case of isotropic turbulence, the combination of the turbulence
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kinetic energy and the dissipation-rate term provides a timescale for the decay of the
turbulence. The approach suggested by Davydov (1961), and taken by DH and
Hanjali¢ & Launder (1972) (hereinafter referred to as HLL1) is to introduce the scalar
trace of the dissipation-rate tensor

€ = g€y, (22)

and to model ¢; in terms of u;u; and e. In this way one equation describing the
evolution of ¢ is needed for closure. The equation for ¢ derived from the Navier-Stokes
equation is given by

D
Di¢ = PP+ P2+PIA T+ + D~ Y. (23)

We can identify the different terms on the right-hand side as (rate of...)

Pl = —2u; juy ;S mixed production,
P? = —2u; v} , Sy,  production by mean velocity gradient,
P} =—2u;u; , U, gradient production,
P3 = —2u; ; w; n Uy, turbulent production,
T = —(upu; , u; turbulent transport,
€ k %*i,m Pi,m/,k
2 SV
II,= ——(p';Uim)x  Pressure transport,
p
D, =¢€, viscous diffusion,
Y = 2u; g i km dissipation,

where S;; = {(U, ;+ U, ;) is the mean strain rate. Tennekes & Lumley (1972) analysed
the vorticity-fluctuation budget, which is related to the above budget for
homogeneous turbulent flows. They inferred from an order-of-magnitude analysis
that, in the high-Reynolds-number regime, the turbulent-production rate (2?) and
the dissipation rate (Y) dominate the balance equation. However, they point out that
the difference of these terms yields a term of the same order as the other terms. The
various terms in the balance equation for ¢ are shown in figure 6. The errors in the
budgets are expected to be highest for this case, because the computation of the
terms in (23) involve correlations of the derivatives. There are two sources of errors,
numerical (truncation errors) and statistical (limited sample size). Unfortunately,
we cannot assess these errors directly, for example by running a finer grid for a longer
time. But an indirect measure of these errors is the imbalance in the budget. In the
case of the dissipation budget, the imbalance in the budget is less than 2% (of Y at
the wall) throughout the channel (less than 0.04% for y* > 20).

The present results indicate that P and Y are the dominant terms in the core
region of the channel, in agreement with Tennekes & Lumley’s analysis. Near the
wall however, these terms remain large but are not larger than the other terms. Close
to the wall (y* < 8) the mixed production rate P! becomes of the same order as P2.
In the range 6 < y* < 15 the production rate (P?) is of the same order as P?.

Very close to the wall (y* < 4), the profile of Y goes through a local minimum at
y" =~ 2 and reaches a maximum at the wall. This behaviour is an artifact of the
splitting of the ;] ,, u; ., term into a viscous diffusion rate and a dissipation rate
term. Figure 7 shows that — Y+ D, does not exhibit this peak and shows a monotonic
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Figure 6. Terms in the budget of the dissipation rate of the turbulence kinetic energy, €, in wall
coordinates. P} = mixed production; P? = production by mean velocity gradient; P? = gradient
production; P! = turbulent production; 7, = turbulent transport; D, = viscous diffusion; Y =
dissipation rate; II, = pressure transport.

decrease towards the wall. The total term might be simpler to model. The models for
the different terms in the e-equation will be discussed in the next section.
Taylor-series expansion of the terms in the e-equation yields the following:

P: = 2b, b3,3 y++0((y+)3)z \
P! =4z¢,(y") + O((y*)?),
1

Pg = —-—ijl b3,3(y+)2 + 0((y+)3)’

T

P: = 3(b, b, b3‘3+b3b3b1,1)y++0((y+)2),
T, = (b b, b3,3+b3 by b1,1)yJr +0((y*)?),
1, = —8c,5,+ O(y*),

(24)

D, = &by 10, ,+by 3y 54b5 305 54b5 1 b, +2(678,+ 0,7, + 05 C5)
+2e,e;1+ O(y),
Y = 4{b1,1b1,1+bl,3b1,3+b3,3ba,3+b3,1b3,1+2(m+m+3—373)}+0(y+)- /

At the wall the pressure-transport-rate term balances with the diffusion-rate term
and the dissipation-rate term. P? is of the order 1/Re, and can be neglected relative
to the other terms. The above expansions show that P? = O((y")?), and the other
production terms (P! and P?) are O(y") close to the wall.

2.3. Velocity pressure-gradient terms

We have seen in the budget of the Reynolds stresses that the velocity pressure-
gradient terms play the dominant role in energy redistribution among the
components. The expression for the velocity pressure-gradient terms has been
extensively analysed and modelled by various groups. Unfortunately, because of the
lack of experimental data, the present models have not been tested. The usual
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Fieurg 7. Split of the viscous term into a dissipation rate term, Y, and a viscous diffusion
term, D

approach in the analysis has been to split the expression into a redistributive part
and a transport part. The redistributive part is then analysed with the aid of the
pressure Poisson equation.

2.3.1. Pressure—strain split

The velocity pressure—gradient term is usually split into a pressure-transport term
and redistributive term

”ij ( (uz 8]’C+u azk +¢z]’ (25)

where @, = 2p’s; (and s; = 3(u; ;+u;,)) is known as the pressure-strain term.
Substituting the Taylor-series expansion for pressure and velocities in the definition
of ¢,; yields

Gy =2a,b, Y+ Py =TT, Gy = 20,0,y
s =0a,b+.... (26)

For the case of a fully developed turbulent channel flow, the flow is homogeneous in
the streamwise and spanwise directions and the split is irrelevant in these directions;
11}, and II,, are the pressure-strain terms. The Taylor-series expansions (equation
(26)) show that the diagonal terms of ¢;;+ 0 as y"+> 0, while the ¢ ,-component does
not vanish at the wall.

Figure 8 shows the distribution across the channel of the terms obtained by
splitting I1,, into a transport term and a pressure-strain term. In this case the split
produces terms that highly emphasize the presence of the wall. The reversal of the
sign of the pressure—strain term near the wall was attributed by Moin & Kim (1982)
to the ‘splatting’ effect. The split chosen in (25) is not unique (Lumley 1975); B. E.
Launder (private communication, 1985) pointed out that the use of a decomposition
suggested by Lumley:

Hz = ——81](p uk +¢1]’ (27)
where Bk = — (0 (W] 8 ] 8y1)) o —30,,(P ) o)+ ' (W] + 1] ,), (28)



26 N.N. Mansour, J. Kim and P. Moin

0.03 ¢ ——
£ —upy
E
0.02
up, 0.01 F
£
(“;_177),2 0
P,“;.z
—0.01
—~0.02 g\\\ P,
E
:llllxllll]llllllllI]lIlllJllJ;lIALLIALJ
0 50 100 150

+

¥
Fiaure 8. Split of the velocity pressure—gradient term into a pressure transport term, (pu;) ,,
and a pressure—strain term, p'u; ,.
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Ficure 9. Split of the veloeity pressure—gradient term, IT,,, into a pressure transport term,
(uyuy/2k)I1,, and a redistributive term, I7,, — (u; u}/2k)I1,,.

would reduce the negative levels of ¢% near the wall to about one-third of their
current levels. A split suggested by the balance equation for the anisotropy tensor of
the Reynolds stresses is as follows:

~ U Uy
Hij = ¢ij+“‘27]”zu (29)
where qgij = (Hij'—%%iﬂu). (30)

Note that the trace of qgij is zero and therefore ¢~i]. is redistributive. Figures 9-12 show
the distribution across the channel of the terms in (29) and (30). The negative levels
of the redistributive 22 component near the wall are substantially reduced. In
addition, the split suggests that a model for the trace of the velocity pressure-
gradient term is needed rather than a model for the pressure-transport vector. This
might be easier to achieve.
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Ficurk 10. Split of the velocity pressure—gradient term, I7,,, into a pressure transport term,
(uyuy/2k)MT,, and a redistributive term, IT,, — (uju,/2k)IT,,.
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Ficure 11. Split of the velocity pressure—gradient term, /T, into a pressure transport term,

(u3uy/2k)IT,, and a redistributive term, IT,, — (u;w;/2k)IT,.

2.3.2. Fast and return splitting

An equation for the pressure fluctuation can be derived from the Navier-Stokes
equations

7

—Ple = 2U; ju; o+ ug jui—ug s, (31)
with the Neumann boundary condition at the wall

Py = Vyy (32)

It is customary (see Lumley 1978, for example) to split the pressure into two parts,
P = p'+p®, one associated with the first term on the right-hand side of (31) and the
other with the second and third terms. Most of the analyses used to model the
pressure-strain terms consider homogeneous cases where the boundary conditions
are not considered in the split. The Poisson equation and the boundary conditions are

2 FLM 194
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Freure 12. Split of the velocity pressure—gradient term, I7,,, into a pressure transport term,

(u; us/2k) M1, and a redistributive term, IT,, — (u uy/2k)IT,,.

0.06
0.04

. 002
11 S
P 0

2
11

—0.02

—0.04

PSS UL SO A AN ST N SN S R AN TS N VO ST S N N S AN S GO T

0 50 100 150
y+

Ficurk 13. Split of pressure—strain term, ¢,;, into a rapid term, ¢!, a return term, ¢%,, and a
Stokes term, ¢5,.

linear in p’. Therefore, we can isolate the effects of the viscous terms at the wall by
splitting the pressure into three parts, a ‘return’ part, a ‘rapid’ part, and (for the
case of flows with walls) a ‘Stokes’ part.

(1) The rapid pressure, p', is defined as the solution to the following problem:

Py =—2U, juj,, (33a)
with the boundary conditions at the walls
p,ly = 0. (33b)
(it} The return pressure, p?, is defined as the solution to

PPy = — (0 ju ;=g ;] ), (34a)
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Fiaure 14. Split of pressure-strain term, ¢,,, into a rapid term, ¢.,, a return term, ¢Z,, and a
Stokes term, ¢3,.
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Fiaure 15. Split of pressure—strain term, ¢,,, into a rapid term, ¢1,, a return term, ¢3,, and a
Stokes term, ¢5;.

with the boundary conditions at the walls
Ph =0. (34b)
(i) And finally the Stokes pressure, p®, is defined as the solution to
%, =0, (35a)
with the boundary conditions at the walls
Py ="y (350)

This split resolves the question of whether to add the boundary conditions to the
return part of the pressure or to the rapid part. It does not remove the effect of the
wall on the rapid and return pressure. The pressure—strain terms are linear in p” and
therefore the Stokes pressure-strain statistics can be added to either the rapid
pressure—strain terms or to the return pressure—strain terms.

2-2
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Ficure 16. Split of pressure-strain term, ¢,,, into a rapid term, ¢,, a return term, ¢2,. and a
Stokes term, ¢$,.

The rapid part of the pressure—strain can be written analytically as follows:

1 — .
psy = i fffv [2U,, ntup )8, GAV, (36)

where (7 is the Green function with homogeneous Neumann boundary conditions at
the walls. Note that most modellers neglect the surface integral terms that should be
added to (36) if inhomogeneous Neumann conditions are used for the pressurc. The
use of homogeneous boundary conditions (equation (33b)) at the walls for the rapid
pressure is consistent with (36) and the approximation used by the modellers. The
effect of the wall on the pressure is contained in the form of the Green function G.

Figures 13-16 show the splitting of the pressure-strain term into the three
components. For the case of ¢,, the rapid part of the pressure-strain term is of the
same order as the return part at y* > 80. Close to the wall the return part is larger
than the rapid part. The ¢,, terms show that at y* > 80 most of the correlation is due
to the return part. Near the wall, the rapid part in this case has the opposite sign
from the total term. The total term is consuming close to the wall, while the rapid
part is producing. The ¢,, terms show that the rapid part contributes the most to this
component. Close to the wall the return part becomes the main contributor. The
¢, split shows that at y* > 80 the return and the rapid terms are of the same order.
Close to the wall the return is the main contributor to the total term. The behaviour
of ¢,, near the wall is much more complicated than that of ¢§i;' (equation (30)), which
also suggests that ¢;; might be simpler to model. Except for ¢}, which is negligible
throughout the channel, the Stokes pressure—strain terms are significant only near
the walls.

3. Model testing

In the previous sections we presented the budget data for the channel. In this
section, we will use these data to evaluate some existing turbulence models. Our
testing will be by direct comparisons of the terms in the budget with the model
expression using the channel data.
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3.1. Dissitpation-rate models
3.1.1. Algebraic models for €

Rotta (1951 a) argued that in the limit as Rer— 0, the dissipation-rate tensor will
be aligned with the Reynolds-stress tensor and can be modelled as

7 7

€;=C, 5%

(37)
He also argued that in the limit Rer oo, the dissipation-rate tensor is isotropic. This
idea was used by HL2 who argued that the model for the dissipation-rate tensor
should take the following form:

3uju;

€ij=§€{(l~fs)8ﬁ+2 k]fs}’ (38)

where they inferred from the experimental data that f is a function of the turbulence
Reynolds number (k?/€) as follows:

f.= (1 + L E)_l. (39)

The assumed form in (38) implies that the anisotropy tensor of the Reynolds stress
and the anisotropy tensor for the dissipation rate are related as follows:

dij =fsbij’ (40)

where d; = €,/(2¢)—18;; and b,; = w]u/(2k) — 15,

Lumley & Newman (1977) identify a turbulence state in terms of the second (II)
and third (I1I) invariants of the Reynolds stress anisotropy tensor (b;;). They have
shown that turbulence states can be identified on a -11 »s. IIT map (anisotropy map)
and that due to the properties of b;;, turbulence states are limited inside the region
bounded by the two axisymmetric states and the two-dimensional state (see figure
17). It can be shown that the states of the dissipation anisotropy tensor (d,;) are also
contained in the same region as the b;; tensor (for more detail, see Lee & Reynolds
1985). If we neglect the d,; and the d,; components of the tensor compared to the
other components (for a large enough sample they are negligible), we can use the
budget results presented in the previous section to compute the variation (as a
function of y*) of d,; on the anisotropy map. Figure 17 shows the points for d;; and
b;; on the anisotropy map for different y* locations in the channel. Figure 18 shows
the points for d;; and the curve for the right-hand side of (40). We note that the states
of turbulence producing the dissipation-rate tensor vary from a nearly isotropic state
in the centre of the channel to a two-dimensional state close to the wall. The model
(equation (40)) clips the transition from the almost two-dimensional state near the
wall to the state in the core region. Close to the centre, the model is closer to the
axisymmetric state than the data would indicate. The fact that the dissipation-rate
tensor is close to a two-dimensional state near the wall is an indication that the
variation in d;; near the wall is due in part to wall-proximity. Near the wall, the
normal component to the wall is suppressed and the anisotropy tensor approaches
the line of the two-dimensional state. At around y* & 3.5 the state of the dissipation
anisotropy tensor is closest to the one-dimensional state. The b;; tensor will also vary
from a two-dimensional state near the wall to the nearly isotropic state in the core
region. In faet, if we assume that f, =1 (i.e. that the anisotropy tensor of the
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Ficure 18. Anisotropy invariant map. O, d,; at various y* in the channel; ——, model,

equation (40).

dissipation rate and the anisotropy tensor of the Reynolds stress are equal), we find
(figure 17) better agreement between the data and the model. It is possible that this
agreement is because KMM’s flow is at low Reynolds number. Comparison of the
anisotropy invariant map of b;; with the map of d;; shows that in the core region, the
dissipation anisotropy is closer to the axisymmetric state than is the Reynolds stress
anisotropy. We point out that close to the wall, Taylor-series expansions of d;; and
b,; show that they are equal only up to O(y*). For example, d,, and b, approach 0
as "+ 0, but the ratio of the two terms will yield d,,/b,,/—2 as y+—0. In fact,
Launder & Reynolds (1983) proposed a model that will have the proper limits (for the
ratio of the component of b;; and d,;), but using the values of the constants (a and f)
recommended by them will yield a model that is tensorially incorrect: e.g. the trace
of ¢;; and the trace of their model are not equal.

Figures 19-22 show the four components of ¢;; compared to the components of the
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Fioure 20. Distribution of ¢,, across the channel. Q, ¢,, term computed from the channel
data; , model, (e/k)u,u,.

model, ¢; = em/ k. The off-diagonal component shows the largest difference
between the model and the data. The diagonal components show better agreements
but would require a different function, f,, for the different components to obtain an
improvement in the agreement.

3.1.2. Transport models for €

Almost any type of one-point closure model would require a timescale or a
lengthscale model. Often, the dissipation rate of the turbulence kinetic energy is used
to obtain these scales. In addition to the equations for the transport of the Reynolds
stresses, an equation for the transport of the trace of ¢;; which is twice the dissipation
rate of the turbulence kinetic energy, ¢ (see equation (23)) is used. The terms in the
equation of € have been modelled by a number of workers (sec for example Davydov
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Fieure 22. Distribution of €,, across the channel. O, ¢, term computed from the channel
data; , model, (e/k)u; ;.

1961; DH; HL1; Lumley & Khajeh-Nouri 1974 ; HL2). Most of the current models
for the e-equation can be written as the sum of a production term, a dissipation term,
a turbulent transport, and a viscous diffusion term

:].?t O(—l ]CP O(»Z ]C (gu: u.; 6,.7) t+6,.7'.7" (41)
where P, = 1P, is the production rate of the turbulence kinetic energy, C.,,, C., and
C, are constants or functions of the turbulence Reynolds number. The dlsagreement
is in the correspondence of the modelled expression with the exact equation. Lumley
& Khajeh-Nouri (1974); and later HL2, associated the right-hand side of (41) with
the difference between P! and Y (see equation (23)) and did not identify a model for
each term in the balance equation. Davydov (1961) and HL1 combined the
production terms P} and P? and modelled them as follows:

P+P:=—-C, ku‘ wjul S, =0, kP (42)
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Fieurk 24. Distribution of the dissipation term, P!—Y, in the budget of ¢ across the channel.
O, term computed from the channel data; ——, model, equation (44).

HL2 recommend C,, = 1.275. Figure 23 shows the above model compared to the
data; the agreement is good away from the wall. The mode! predicts the production
very well away from the wall. In the near-wall region, however, the peak in the
production of ¢ is underpredicted and a modification to the model is needed in this
region.

HL1 combined the production term P! with Y and modelled the combination

as

62

€2 IC :
The right-hand side of (43) approaches o as y+— 0. HL2 modified the model for the
dissipation rate of € using a modified dissipation rate of k, € = e—2((k%)_y+)2, which
ensures that the ratio é/k is bounded as y*+ 0. They also argued that turbulence
data indicate that the dissipation rate of ¢ is a function of the Reynolds number. This

—Pi4Y=C (43)
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Freure 25. Distribution of the turbulent transport term, 7, in the budget of ¢ across the
channel. O, term computed from the channel data; , model, equation (45).

functional was accounted for by introducing a damping function. If the model of
H1L2 represents a model for the left-hand side of (43), we have

—PI Y =Cu )T (34)

where C,, = 1.8, and f, = 1 —%% exp[—(k*/6€)?]. Figure 24 shows the above model
compared to the data. In the core region, the model and the data show good
agreement. Close to the wall, the model underpredicts the data.

The turbulent transport of ¢ is modelled by HL1 as

T =C, (Su; u; eyj) E (45)

where C, = 0.15. Figure 25 shows the model compared to the data. This term is small
compared to the other terms in the budget equation and the disagreement between
the model and the data is small compared to the errors in the other terms. The
production rate, P?, and the pressure diffusion rate, IT,, were neglected by HL1, and
the present data also show that these terms are small.

3.2. Pressure—strain models

Most models used for the velocity pressure-gradient expression are based on splitting
the expression into a pressure—strain term and a pressure-diffusion term. The
pressure-diffusion term is either added to the turbulent transport term or neglected.
Several models for the pressure-strain term exist that use different approximations
and arguments to provide closures for the term. Most of these closures are based on
homogeneous flow arguments. In this section, we will test the closure of LRR for the
pressure-strain term that was developed for wall-bounded flows. LRR split the
pressure—strain term into a return term, a rapid term, and a wall term. For the return
terms, ¢Z, they recommend the use of the model proposed by Rotta (1951 a),

¢y =—C — 39

wine

6 7 ’
17 (g u; i k), (46)
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where (| is a model constant. They modelled the rapid term by assuming that the
mean velocity gradient is slowly varying and write

Pl = U moai’. (47)

They then assumed that a]}' is linear in the Reynolds stresses. Substitution of the
linear approximation for ¢}’ into the expression for ¢}; yields

_(Cy + 8 30C,—2 8C,—2)
¢u = ) [1 %I]k ¢z]] _(’_“*,;g—lk[Ui,j + Uj,z'] —£—f_1_— [Aij "%Pk 61]’]7 (48
where A, =—(u;u, U, ;+uju, Uy, ,;). The above model also has one adjustable

constant, C,. The value of the constants C; = 1.5 (for the return term) and C, = 0.4
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were chosen by LRR by matching the homogeneous shear experiment of Champagne,
Harris & Corrsin (1970).

By examining the case of wall-bounded flows, LRR argued that a third term, ¢,
is needed to account for near-wall effects, corresponding to the reflected wall
influence of ¢, + ¢, They argued that the model for the wall effects shounld take the
same form as ¢}, + @7, and using near-wall data, the wall effect on the pressure—strain
was modelled as

W= {0 1255(5’._17-%&-)+0.015(P‘.-—A..)}E[i+—i-]. (49)
i : k (e B R ¥ ij ij € y+ (2R€1—y+)

Figures 26-28 show comparisons of LRR’s model for the diagonal terms to the
data. The comparison for the off-diagonal term is similar, the agrcement is acceptable
away from the wall, but is poor close to the wall. We have also shown the distribution
of the individual terms. Rotta’s return model does not vanish at the wall; while, as
can be seen from the Taylor serics expansions (equation (26)), the diagonal terms
should vanish at the wall. This is an indication that LRR’s model will behave poorly
close to the wall because of the return model. It is clear that Rotta’s model should
be modified to include the correct behaviour near the wall. In fact, the model without
Rotta’s return model shows the proper trends, and it will be better than the full
model.

3.3. Turbulence-transport models

The nonlinearity of the equations of motion introduces higher-order moments when
equations for the moments are derived. For the Reynolds-stress equations, the triple-
correlation terms need either to be closed or to have an equation derived for them.
The need for equations describing the evolution of the turbulent-transport term
(Tyx = wjujuy) was suggested by Chou (1945a) and Davydov (1959). But using
closures at the triple-correlation level will add ten more equations to the system of
equations to be solved. However, the transport equations for 7}, are used to derive
closures for the triple-correlation terms. The construction of the model for the
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transport terms starts (see HL1; Lumley 1978) with the governing equation for the
transport terms,

D — -
ﬁTijk + {Tijl Ulc.l + T Uj,l + Tjkl Ui,z} —{u; uJ’.(u{ u;c),l + g wi(uy u;-)‘l + u; w(uy ué),L}
+ (g ui wjuy) , = —{u; e Py Uy Pl +uy w; pl b g ug g g, + g g W U U UG )
(50)

Davydov neglected the second term on the right-hand side of (50). He also argued
that in an analogy to the pressure-strain model, the remaining term on the right-
hand side should be modelled as —C}, (e/k)T};,. To close the quadruple-correlation
term, Millionshchikov’s zero-fourth-cumulant hypothesis (Monin & Yaglom 1975,
p- 241) is often invoked

N A

’ —_ /’ Vé 7 ’ ’ ’ I 7 ’
(wyu; ujuy) = Uy Uy U Uy 2y U Uy U+ Uy Uy UG U (51)

Using the above closure in the triple-correlation equations, we have

I_) /’ /’ 7 ’ ’ /’ /’ ’ /’ / /’ 7
ETi]‘k"‘{Tm Uk,l +Tir Uj,l +Tﬂcz Ui,l}+ {u; w(uguy) o +ugu(wg Uy) g+ g g (u; uj),l}

, €

= —CDETi;‘k- (52)

If we use the assumption of HL1 (that the transport terms are in equilibrium) and
drop the D/Dt term, the model for the triple correlation will close as follows:

/’ e ’ 6 ’ e
_{%CD E‘Szk + Uk,l} Tijl - {%CD z 311‘ + Ui,t} Tjkl _{é D —];3” + Uj,l} Tkil

= {ww(wfwg) , +upwg(wwg)  +Huwywlu ) b (53)

In addition to the equilibrium assumption, HL1 assumed that the production terms
are negligible and wrote the model for the triple correlation as follows

— k
g gy = O {ug g (5 w) g+ g (e ), oy (0 0) o} (54)

For the case of no mean velocity gradients, the two models (equations (53) and (54))
are the same (with O}, = 1/C,). If we use the expression given by (53) to model the
transport terms, we have for the channel case

k AN AR 7 7 ¥
=T, = Osg [2u7 uy(uy W) o+ Uy ug(uy U)ot 2U1,27212]a

k—— ——
_ 7 7
— T = Os'e'u2 Us(Ug Us) o,

k
— T35 = O - (205 uy(uy u:/s)z + ugp uy(ug u:/a),z]y

k ’ ’ ’ /’ ’ ’ 7 /’
=Ty = C - [2ug up(uy uy) o +uy ug(uy uy) o, + U, 5 Ty,

The above expressions show that the production of the triple correlation in the fully
developed channel will affect the 7,,, and 7T},,, components only ; the largest effect is
on the T;,, component. Figurc 29 shows the models for 7},,, given by (53) and (54)
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(with Cy, = 1/C, = 0.11) compared to the data. These results indicate that both
models do not agree well with the data and that including the production term does
not, improve the model. The extra effort involved in inverting the coupled system
given by (53) is not justified.

A simpler form for the transport term was derived by DH ubmg ‘the recipe that
turbulence transport of a quantity, u; ¢, should be modelled as oc u; u; @ ;. Following
this recipe, they modelled the transport term as

k
— Uy Uy U = C;;u; (g uf) o (55)

Although this model is tensorially incorrect, as pointed out by HLI, it is often used
because of its simplicity. LRR recommend C = 0.11 and C;=0.25 (based on
numerical experimentation) for the values of the constants in the models. Figures
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30-33 show the comparisons of the models given by (54) and (55) with the data. We
can see that the simpler (and tensorially incorrect) model of DH performs as well as
HL1’s model and, for the case of the T},,, component, better than the model of HL1.
Considering the simplieity of both models, the trends predicted by the model are
acceptable except for 7)., where the sign of the slope close to the wall is not predicted
correctly.

We note that both HL1’s and DH’s models do not have the proper behaviour near
a wall; for example wju;u;, = O((y")®) as y"+—0. The different terms in the
expressions of the model will asymptote as y*+—-0 as follows:

k= 0(y")*),
ugu; = O((y*)?) forl + 2,
uyuy = O((y™)").
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Ficure 33. Triple-correlation term —wuju; u; across the channel. O, term computed from the
channel data; , model, equation (54); —-—-—, model, equation (55).

Therefore, k
g (), = OUy™)°).

The model for u;u,u, will not have the proper behaviour as 4"+ 0. However, the
asymptotic behaviour only holds extremely close to the wall (y* < 5) and should not
be the sole determining factor in evaluating a model.

4, Summary and discussions

We have used the channel data of Kim et al. (1987) to compute the terms in the
transport equations for the Reynolds stresses and to compute the terms in the
transport equation for the dissipation rate of turbulence kinetic energy. It is
important to recognize that the simulation data is at low Reynolds number and that
the present conclusions may be valid only for low-Reynolds-number flows. In
particular, the results near the wall related to dissipation rates are sensitive to
Reynolds-number dependence. The budgets reveal that several terms that were
negligible away from the wall become important close to the wall. The budget for the
turbulence kinetic energy reveals that, contrary to the commonly held belief (see for
example Townsend 1976), the pressure-strain term near the wall is not of the same
order as the production term away from the wall. In fact, the pressure term remains
small relative to the dissipation rate and the viscous-diffusion rate. Away from the
wall, the budget for the dissipation rate of the turbulence kinetic energy reveals that
the turbulent production term and the dissipation rate are the dominant terms as
estimated by Tennekes & Lumley (1972). Close to the wall, all the production terms
become important. In considering the velocity pressure-gradient term, we have
shown that different splits of the velocity pressure-gradient term will give different
behaviours near the wall and that a judicious choice may be necessary.

For wall-bounded flows, we have shown that the inhomogeneous boundary
condition on the pressure introduces a third term in the split of the pressure and have
recommended that the pressure be split into a rapid term, a return term, and a Stokes
term. We find that the rapid and the return terms in the channel are of the same
order, and we cannot neglect one with respect to the other. The 22 component of the
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pressure—strain term shows that the rapid part in fact has the opposite sign as the
total term. Away from the wall the rapid part is consuming, while the total term is
producing. Close to the wall the total term is consuming (the splatting effect), while
the rapid part is producing.

Comparison of closure models with the data reveals that the pressure-strain term
needs immediate attention and the model of Launder et al. (1975) has difficulty. As
a first approximation, the anisotropy tensor for the dissipation rate of the Reynolds
stresses may be modelled in terms of the anisotropy tensor of the Reynolds stresses.
The budget for the dissipation rate of the turbulence kinetic energy is modelled well
away from the wall; close to the wall, improvements are needed. Finally, the
transport term can also be improved upon. Overall, the closure models are better
than expected for the budget of the dissipation rate of the turbulence kinetic energy
and are generally inadequate for the pressure-strain correlations.
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